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Physically Based Rendering
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Monte Carlo Integration
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Monte Carlo Integration
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Monte Carlo Integration
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Disadvantages of 
Monte Carlo Integration
• Converges at a slow rate of 𝑂 𝑛

• We propose to improve convergence using Sequence Transformation
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Sequence Transformation

• A mapping 𝒯 from a sequence 𝑠𝑛 to another sequence (𝑡𝑛)
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Sequence Transformation

Example: Aitken’s Δ2 Process

𝑡𝑛 = 𝑠𝑛 −
𝑠𝑛+1 − 𝑠𝑛

2

𝑠𝑛+2 − 2𝑠𝑛+1 + 𝑠𝑛
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Motivation

• Monte Carlo integration → a sequence of terms converging to 𝐼

• Apply sequence transformation methods to Monte Carlo integration
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Related Work: 
𝑎𝑛𝑔𝑛transformation [BZ91]

𝑆𝑛 =
1

𝑛


𝑖=1

𝑛

𝑓(𝑥𝑖)

• Transformation:

𝑇𝑛+1 = 𝑆𝑛 −
𝑆𝑛+1 − 𝑆𝑛
𝑔𝑛+1 − 𝑔𝑛

𝑔𝑛

• 𝑔𝑛 is arbitrary function of 𝑛

• However, we show (Tn) has slightly higher variance than (𝑆𝑛) regardless of 
choice of 𝑔𝑛
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Related Work:
Using Anderson Acceleration[PDZ*18]
• Showed improvements in geometry processing and physics 

simulation using Anderson Acceleration [And65]

• However, applicable to fixed point methods

• Monte Carlo integration is difficult to formulate as one
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Our Method
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Background: 
Analysis of Monte Carlo convergence
• There is no universal sequence transformation method for all 

sequences [DGB82]

• Determine type of convergence before applying sequence 
transformation methods
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Type of Convergence [Wen89]

𝜌 = lim
n→∞

𝑠𝑛+1 − 𝑠

𝑠𝑛 − 𝑠
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Contribution 1: 
Analysis of Monte Carlo convergence
• Type of convergence is defined for deterministic sequences only

• We show that Monte Carlo estimates converge like a logarithmic 
sequence
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Contribution 2: A data-driven approach 
to learn sequence transformation 
• A simple MLP architecture is proposed

• Pass in sequence values in a sliding window fashion

• Output of the network is a single value per sliding window
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2/4 hidden layers,
256 neurons per layer,
LeakyReLU activation fn.
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2/4 hidden layers,
256 neurons per layer,
LeakyReLU activation fn.
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2/4 hidden layers,
256 neurons per layer,
LeakyReLU activation fn.
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Contribution 3: Loss function

• We propose a novel loss function tailored to Monte Carlo integration

• Output sequence requirements:
• Must have lower error than input sequence

• Should converge at a faster rate than input sequence
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Convergence Graphs

• Plot log(MSE) vs. 
log(Sample Count)
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Our Method

log𝑀𝑆𝐸(𝑆𝑛)
(Original)

log𝑀𝑆𝐸(𝑇𝑛)
(Transformed)
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Loss Function Requirement 1: 
Lower Error

• Minimize the total signed 
distance between the output and 
input sequences:

log(𝑀𝑆𝐸 𝑇𝑛 ) − log(𝑀𝑆𝐸 𝑆𝑛 )
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log𝑀𝑆𝐸(𝑆𝑛)
signed distance

log𝑀𝑆𝐸(𝑇𝑛)



Loss Function Requirement 2: 
Faster Convergence

Faster convergence ∶=

Better “slope” of log𝑀𝑆𝐸(𝑇𝑛)

log𝑀𝑆𝐸 𝑇𝑛 ≈ 𝑎 log 𝑛 + 𝑏
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log𝑀𝑆𝐸(𝑇𝑛)

Intercept = 𝑏



Loss Function Requirement 2: 
Better Slope

Minimize 𝑎 log 𝑛 + 𝑏, 𝑛 small ⇒
𝑏 dominates 

Want optimizer to make 𝑎 more 
negative

Proposal: minimize 𝑎 +
𝑏

log 𝑛
instead 

⇒ Minimize  
log 𝑀𝑆𝐸 𝑇𝑛

log 𝑛

(Since log𝑀𝑆𝐸 𝑇𝑛 ≈ 𝑎 log 𝑛 + 𝑏)
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Loss Function Requirement 2: 
Better Slope

Proposed loss function: 

ℒ𝑛 =
log𝑀𝑆𝐸(𝑇𝑛)

log 𝑛
− log𝑀𝑆𝐸 𝑆𝑛
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A Quick Recap

• Monte Carlo integration has slow convergence and can be viewed as a 
sequence

• We consider a data-driven approach to sequence transformation to 
improve it 

• We design a neural network to learn sequence transformation

• Now we apply our method to 1D integrals and images
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Results
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1D Result: Step Function
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Results

Shape of the Step function Convergence graph of Step function
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Output, 8 samples per pixelInput, 8 samples per pixel Reference, 8192 samples per pixel

Results: Diffuse Teapot Scene
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Output, 8 samples per pixelInput, 8 samples per pixel Reference, 8192 samples per pixel

Results: Diffuse Teapot Scene
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Results: Diffuse Teapot Scene
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Results

Convergence graph of Diffuse Teapot scene
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Results: Glossy Teapot Scene
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Results

Output, 8 samples per pixelInput, 8 samples per pixel Reference, 8192 samples per pixel
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Results: Glossy Teapot Scene
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Results

Output, 8 samples per pixelInput, 8 samples per pixel Reference, 8192 samples per pixel
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Results: Glossy Teapot Scene
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Results

Convergence graph of Glossy Teapot scene
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Results with Denoiser: 
Cornell Box Scene
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Results

Output, 8 samples per pixelInput, 8 samples per pixel Denoised output, 8 samples per pixel
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Results with Denoiser: 
Cornell Box Scene
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Results

Output, 8 samples per pixelInput, 8 samples per pixel Denoised output, 8 samples per pixel
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Results with Denoiser: 
Cornell Box Scene
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Convergence graph of Cornell Box scene
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Summary and Future Work

• Monte Carlo estimates converge close to logarithmic rate.

• Proposed a data-driven neural network approach to learn a sequence 
transformation that can improve Monte Carlo integration.

• Proposed a custom loss function tailored to Monte Carlo integration.

• Obtained improvements for both 1D integrals and rendered images.

• Make our method real-time 

• Explore possibilities of application along with analytical sequence 
transformations
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